

MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

WI-0304 DS74 NSB-317L Rev. 0. Date 01.09.2008

NSB- 317L	FOR WELDING LOW CARBON AUSTENITIC STAINLESSS STEELS CONTAINING A NOMINAL 19Cr-13Ni-3.5Mo									DATA SHEET NO. 74		
SPECIFICATION		.4					JIS	Z 3221	3221			
CLASSIFICATION		6 D:					D31	17L-16				
PRODUCT DESCRIPTION	A metallurgically advanced rutile based flux formulated with balanced additions of chemically basic, amphoteric and acid minerals, together with small alloy additions to compensate for arc losses. The flux is concentrically extruded onto a fully alloyed core wire and bound by a blend of silicates that assures both coating strength and resistance to subsequent moisture absorption											
WELDING FEATURES OF THE ELECTRODE	This unique flux formulation ensures excellent arc stability, ease of initial arc strike and re-strike minimal spatter on AC and virtually none on DC+. The resultant weld seams are smooth, evenly rippled and free from undercut while slag detachability is excellent. Metal recovery is some 103% with respect to core wire weight.											
APPLICATIONS AND MATERIALS TO BE WELDED	Applications for the electrode are to be found in the Chemical, Petro-Chemical and Cryogenic Processing and Storage Industries as well as the Food, Brewery and Pharmaceutical Industries using the following materials: ASTM 317 317L CG8M											
	higher Mo content ensures improved resistance to pitting corrosion in high chloride environments compared to lower Mo variants.											
WELD METAL ANALYSIS COMPOSITION % BY Wt.		С	Mn	Si	S	Р	C	Cr N	li Mo	Cu	Fe	FN
	MIN	-	0.5	-	-	-	1	8 12	2 3.0	-		8
	MAX	0.04	2.5	1.0	0.0	3 0.0	4 2	1 1	4 4.0	0.75		15
	TYPICAL	0.03	1.2	0.7	0.0	1 0.0	2 2	0 1	3 3.3	0.13	Bal.	10
WELD METAL PROPERTIES (ALL WELD METAL)	PROPERTY			<u>UNITS</u>		<u>MINIMUM</u>		I	YPICAL		<u>OTHEF</u>	<u>RS</u>
	Tensile strength			N/mm ²		520			650			
	0.2% Proof stress			N/mm ²		-			420			
	Elongation on 4d			%		30			36		H.V. 210	
	Reduction of Area (RA)			%		-			40			
			J		-		90					
WELDING AMPERAGE AC or DC+	Ø (mm)	2.0		2.6		3.2		4.0	5.0			
	MIN	40		80		100		140	40 160			
	MAX	60		100		130	160		210			
OTHER DATA	Electrodes	that h	ave b	ecome	dam	np sho	uld be	e re-drie	ed at 15	0°C for	1 hour.	
RELATED PRODUCTS	Please contact our Technical Department for detail.											